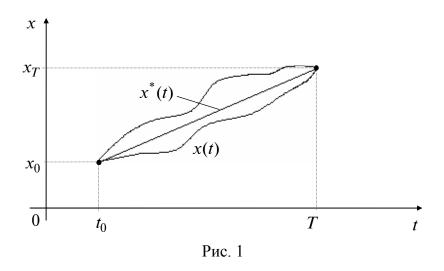
Лекция 15. ОСНОВЫ ВАРИАЦИОННОГО ИСЧИСЛЕНИЯ

1. ОБЩАЯ ПОСТАНОВКА ЗАДАЧИ И ОСНОВНЫЕ ПОЛОЖЕНИЯ

На практике существуют задачи оптимизации, в которых критерий качества зависит от функции, определить которую необходимо так, чтобы критерий принял минимальное или максимальное значение.

Вариационными задачами называются задачи о поиске экстремума функционалов, т.е. величин, численное значение которых определяется выбором одной или нескольких функций.

Пример. На плоскости (t, x) заданы две точки (t_0, x_0) , (T, x_T) . Требуется соединить эти две точки гладкой кривой, имеющей наименьшую длину (рис. 1).



□ Длина кривой, соединяющей две заданные точки, находится по формуле

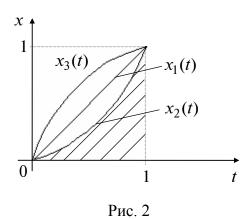
$$I[x(t)] = \int_{t_0}^{T} \sqrt{1 + x'^2(t)} dt$$
.

Таким образом, решение задачи сводится к определению такой непрерывной функции $x^*(t)$, имеющей на отрезке $[t_0,T]$ непрерывную производную и удовлетворяющей заданным граничным условиям $x(t_0) = x_0$, $x(T) = x_T$, на которой критерий I[x(t)] примет минимальное значение. Критерий зависит от функции x(t) и представляет собой функционал. Очевидно, решением является прямая $x^*(t)$, соединяющая две заданные точки.

Переменная I[x(t)] называется **функционалом**, зависящим от функции x(t), если каждой кривой из заданного класса функций \mathcal{M} соответствует вполне определенное действительное значение I, т.е. функции x(t) соответствует число.

Класс \mathcal{M} функций (кривых), на которых определен функционал, называется его областью определения.

Пример 2. Найти значения функционала $I[x(t)] = \int_0^1 x(t) dt$ на следующих кривых, образующих класс $\mathcal{M}: x_1(t) = t$, $x_2(t) = t^2$, $x_3(t) = -(t-1)^2 + 1$ (рис. 2).



 \square Заметим, что все кривые проходят через две точки (0;0), (1;1), т.е. удовлетворяют граничным условиям x(0)=0, x(1)=1. Найдем значения функционала, соответствующие каждой кривой из класса \mathcal{M} :

$$I[x_1(t)] = \int_0^1 t \, dt = \frac{t^2}{2} \Big|_0^1 = \frac{1}{2}; \qquad I[x_2(t)] = \int_0^1 t^2 dt = \frac{t^3}{3} \Big|_0^1 = \frac{1}{3};$$
$$I[x_3(t)] = \int_0^1 \left[-(t-1)^2 + 1 \right] dt = \frac{2}{3}.$$

В данном примере функционал имеет простой физический смысл — площадь под кривой x(t). Каждой кривой из класса \mathcal{M} поставлено в соответствие число, равное площади. Очевидно, может быть сформулирована задача о нахождении такой кривой из класса \mathcal{M} , площадь под которой была бы минимальна (максимальна).

Функционал I[x(t)] называется **непрерывным**, если малому приращению функции x(t) соответствует малое изменение функционала. Уточним, какие изменения функции называются малыми или, что то же самое, какие кривые называются близкими.

Будем полагать, что функционал I[x(t)] определен на элементах x(t) линейного нормированного пространства функций, в котором каждому элементу x(t) поставлено в соответствие действительное число $\|x\|$, называемое нормой элемента, при этом выполняются следующие условия:

- 1) $||x|| \ge 0$ и ||x|| = 0 тогда и только тогда, когда $x = \mathbf{0} (\mathbf{0} нулевой элемент);$
- $2) \quad \|\lambda x\| = |\lambda| \cdot \|x\|;$
- $3) ||x + y|| \le ||x|| + ||y||$

для любых элементов x, y, принадлежащих пространству, и любого действительного числа λ .

Предметом нашего рассмотрения будут, как правило, пространства C^0, C^1 .

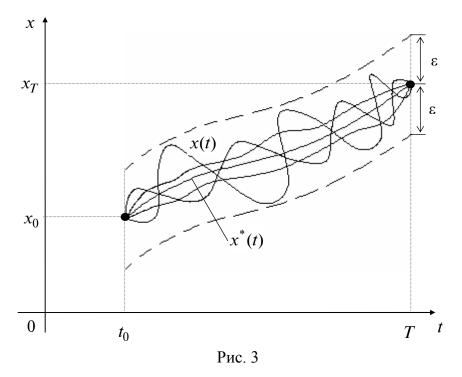
Пространство $C^0([t_0,T])$ состоит из непрерывных функций (кривых) x(t), определенных на отрезке $[t_0,T]$. В пространстве $C^0([t_0,T])$ норма вводится следующим образом: $\|x\|_0 = \max_{t \in [t_0,T]} |x(t)|$.

Пусть $x^*(t) \in C^0([t_0, T])$ и $\varepsilon > 0$ – произвольное число.

 $\pmb{\varepsilon}$ -окрестностью нулевого порядка кривой $x^*(t)$ называется совокупность кривых $x(t) \in C^0([t_0,T])$, такая, что

$$||x - x^*||_0 = \max_{t \in [t_0, T]} |x(t) - x^*(t)| < \varepsilon.$$
 (1)

Это означает, что расстояние от кривой $x^*(t)$ до кривых x(t) мало (рис. 3), т.е. графики кривых x(t) целиком лежат внутри полосы шириной 2ε , окружающей график функции $x^*(t)$. В данном случае можно считать близкими кривые, близкие по ординатам.



Пространство $C^1([t_0,T])$ состоит из непрерывных функций (кривых) x(t), определенных на отрезке $[t_0,T]$ и имеющих на этом отрезке непрерывную производную. В пространстве $C^1([t_0,T])$ норма вводится следующим образом:

$$\|x\|_1 = \max_{t \in [t_0, T]} |x(t)| + \max_{t \in [t_0, T]} |x'(t)|.$$

Пусть $x^*(t) \in C^1([t_0, T])$ и $\varepsilon > 0$ – произвольное число.

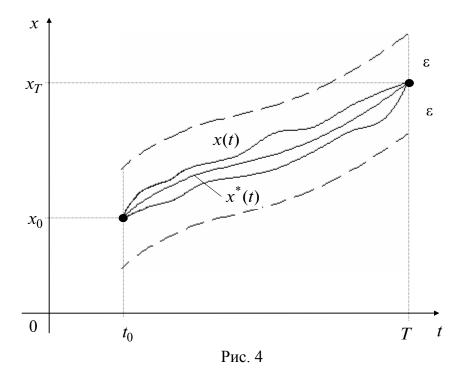
 ${f \epsilon}$ -окрестностью первого порядка кривой $x^*(t)$ называется совокупность кривых $x(t) \in C^1([t_0,T])$, такая, что

$$\|x - x^*\|_{1} = \max_{t \in [t_0, T]} |x(t) - x^*(t)| + \max_{t \in [t_0, T]} |x'(t) - x^{*'}(t)| < \varepsilon.$$
 (2)

Это означает, что у кривых x(t) и кривой $x^*(t)$ близки не только ординаты, но и значения производных (рис. 4). Действительно, если $\|x-x^*\|_1 < \varepsilon$, то для всех $t \in [t_0, T]$ справедливы неравенства $\|x(t)-x^*(t)\| < \varepsilon$ и $\|x'(t)-x^{*'}(t)\| < \varepsilon$. Отсюда следует, что кривая, принадлежащая ε -окрестности первого порядка, принадлежит и ε -окрестности нулевого порядка (см. рис. 3).

Аналогично вводится норма в пространстве $C^m([t_0,T])$ функций, имеющих непрерывные производные до порядка m включительно, т.е.

$$\|x\|_m = \sum_{p=0}^m \max_{t \in [t_0, T]} |x^{(p)}(t)|.$$



Кривые x(t), на которых сравниваются значения функционала, называются **до- пустимыми кривыми** или **кривыми сравнения**.

Обозначим через $x^*(t)$ допустимую кривую, на которой функционал достигает экстремума, а через x(t) произвольную допустимую кривую. Разность $x(t) - x^*(t) = \delta x(t)$ называется вариацией кривой $x^*(t)$.

Вариация $\delta x(t)$ есть функция t и принадлежит тому же функциональному пространству, что и функция x(t). Используя вариацию $\delta x(t)$, можно представить любую допустимую кривую x(t) в виде

$$x(t) = x^*(t) + \delta x(t). \tag{3}$$

Однако нами используется и другая запись

$$x(t) = x^*(t) + \alpha \,\delta x(t) \ . \tag{4}$$

В выражении (4) $\delta x(t)$ – фиксированная функция, а α – числовой параметр. Очевидно, что при $\alpha=0$ справедливо $x(t)=x^*(t)$.

Назовем *приращением функционала* ΔI разность

$$\Delta I = I[x(t)] - I[x^*(t)]. \tag{5}$$

Линейным функционалом называется функционал I[x(t)], удовлетворяющий следующим условиям: $I[c \cdot x(t)] = c \cdot I[x(t)]$, $I[x_1(t) + x_2(t)] = I[x_1(t)] + I[x_2(t)]$, где c – произвольная постоянная.

Дадим определение первой вариации функционала с использованием (3).

Если приращение функционала $\Delta I = I[x^*(t) + \delta x(t)] - I[x^*(t)]$ можно представить в виде

$$\Delta I = \delta I[x^*(t), \delta x] + \beta[x^*(t), \delta x] \cdot \max |\delta x|,$$

где $\delta I[x^*(t),\delta x]$ — линейный по отношению к $\delta x(t)$ функционал, $\max |\delta x|$ — максимальное значение $|\delta x|$ и $\beta[x^*(t),\delta x] \to 0$ при $\max |\delta x| \to 0$, то главная, линейная по отношению к δx часть приращения функционала, т.е. $\delta I[x^*(t),\delta x]$, называется *первой вариацией функционала*.

Можно дать другое определение первой вариации, используя (4).

Так как $I[x^*(t) + \alpha \, \delta x(t)]$ есть функция $\phi(\alpha)$ числового параметра α , то, разложив эту функцию в ряд Тейлора в окрестности точки $\alpha = 0$ по степеням α , найдем

$$\Delta I = I[x^*(t) + \alpha \,\delta x(t)] - I[x^*(t)] = \alpha \,\delta I + \frac{\alpha^2}{2} \,\delta^2 I + \dots , \qquad (6)$$

где

$$\delta I = \frac{d \varphi(\alpha)}{d \alpha} \Big|_{\alpha=0} = \frac{d I[x^*(t) + \alpha \delta x(t)]}{d \alpha} \Big|_{\alpha=0}$$
 (7)

и называется первой вариацией функционала,

$$\delta^2 I = \frac{d^2 I[x^*(t) + \alpha \, \delta x(t)]}{d \, \alpha^2} \Big|_{\alpha=0}$$

и называется второй вариацией функционала и т.д.

Замечания.

- **1.** Мы привели два определения вариации функционала. Если существует вариация в смысле главной линейной части приращения функционала, то существует вариация в смысле производной по параметру и эти определения эквивалентны.
- **2.** В литературе вместо I[x(t)] часто используется обозначение $I[x(\cdot)]$, чтобы явно различить элемент $x(\cdot)$ соответствующего функционального пространства и значение функции x(t) при фиксированном t.
- **3.** Каждую функцию, принадлежащую классу \mathcal{M} , можно рассматривать как точку некоторого пространства.

Говорят, что функционал I[x(t)], определенный на классе \mathcal{M} кривых x(t), достигает на кривой $x^*(t)$ глобального минимума (максимума), если

$$I[x^*(t)] \le I[x(t)] \qquad \Big[I[x^*(t)] \ge I[x(t)] \quad \Big] \quad \forall x(t) \in \mathcal{M}.$$

Пример 3. Найти глобальные максимум и минимум функционала из примера 2.

□ Очевидно, на заданном классе \mathcal{M} допустимых кривых функции $x_2(t) = t^2$ соответствует наименьшее значение функционала (ей соответствует наименьшая площадь под кривой на рис. 2), а кривой $x_3(t)$ – наибольшее значение (ей соответствует наибольшая площадь под кривой на рис. 2). ■

Понятие локального минимума (максимума) связано с исследованием поведения функционала на близких кривых. Различают сильный и слабый локальный минимум (максимум).

Говорят, что функционал I[x(t)] достигает на кривой $x^*(t)$ сильного минимума (максимума), если $I[x^*(t)] \le I[x(t)]$ $\Big[I[x^*(t)] \ge I[x(t)]\Big]$ в ϵ -окрестности нулевого порядка кривой $x^*(t)$.

Говорят, что функционал I[x(t)] достигает на кривой $x^*(t)$ слабого минимума (максимума), если $I[x^*(t)] \le I[x(t)]$ $\Big[I[x^*(t)] \ge I[x(t)]\Big]$ в ϵ -окрестности первого порядка кривой $x^*(t)$.

Локальные минимумы и максимумы функционала называются его *локальными* экстремумами.

Замечание. Всякий сильный экстремум функционала является и слабым, а обратное, вообще говоря, неверно. Поэтому любое условие, необходимое для слабого экстремума, необходимо и для сильного.

Необходимые условия локального экстремума одинаковы для сильного и слабого экстремума и определяются следующей теоремой.

Теорема 1. (необходимые условия локального экстремума).

Если функционал I[x(t)], имеющий вариацию, достигает минимума или максимума на кривой $x^*(t)$, где $x^*(t)$ есть внутренняя точка области определения функционала, то при $x(t) = x^*(t)$ первая вариация функционала равна нулю:

$$\delta I = 0. (8)$$

Замечания.

1. Доказательство необходимых условий экстремума функционала опирается на тот факт, что при фиксированных $x^*(t)$ и $\delta x(t)$ функционал $I[x^*(t) + \alpha \, \delta x(t)] = \varphi(\alpha)$ является функцией параметра α . При $\alpha=0$ функционал достигает экстремального значения $I[x^*(t)]$. Заметим, что α может принимать в окрестности точки $\alpha=0$ как положительные, так и отрицательные значения (при этом $x^*(t)$ является внутренней точкой в области определения функционала). Так как точка $\alpha=0$ является точкой локального экстремума функции $\varphi(\alpha)$, то, применяя необходимые условия локального экстремума функций [36], получаем

$$\varphi'(\alpha)\big|_{\alpha=0} = 0$$
 или $\frac{d}{d\alpha}I\big[x^*(t) + \alpha\,\delta x(t)\big]\bigg|_{\alpha=0} = 0$. (9)

2. Различие между сильным и слабым экстремумами не имеет существенного значения при выводе необходимого условия экстремума, но весьма существенно при выводе и применении достаточных условий экстремума.

При выводе необходимых условий экстремума для различных постановок вариационных задач применяется следующая важная теорема.

Теорема 2 (основная лемма вариационного исчисления).

Если для каждой непрерывной функции $\eta(t)$

$$\int_{t_0}^{T} a(t) \, \eta(t) \, dt = 0 \,, \tag{10}$$

где функция a(t) непрерывна на отрезке $[t_0, T]$, то $a(t) \equiv 0$ на том же отрезке.

Замечания.

- **1.** Утверждение основной леммы вариационного исчисления и ее доказательство не изменятся, если на функцию $\eta(t)$ наложить следующие ограничения: $\eta(t)$ имеет непрерывную производную; $\eta(t_0) = \eta(T) = 0$.
- **2.** Все изложенное в этом разделе без изменения переносится на функционалы $I[x(t)] = I[x_1(t), ..., x_n(t)]$, зависящие от вектор-функции $x(t) = (x_1(t), ..., x_n(t))^T$ одной переменной или зависящие от функций нескольких переменных. Для таких функционалов вариация также определяется как главная линейная часть приращения функционала и доказывается, что на функциях (вектор-функциях), на которых реализуется экстремум, вариация равна нулю.

2. ВАРИАЦИОННЫЕ ЗАДАЧИ ПОИСКА БЕЗУСЛОВНОГО ЭКСТРЕМУМА

2.1. МЕТОД ВАРИАЦИЙ В ЗАДАЧАХ С НЕПОДВИЖНЫМИ ГРАНИЦАМИ

2.1.1. Функционалы
$$\int\limits_{t_0}^T Fig(t,x(t),x'(t)ig)dt$$
 , зависящие от одной функции

ПОСТАНОВКА ЗАДАЧИ

Рассмотрим множество \mathcal{M} допустимых функций (кривых) x(t), удовлетворяющих следующим условиям:

- а) функции x(t) определены и непрерывно дифференцируемы на отрезке $[t_0,T]$, где t_0 и T заданы, т.е. $x(t)\in C^1([t_0,T])$;
 - б) функции x(t) удовлетворяют граничным условиям

$$x(t_0) = x_0, \qquad x(T) = x_T, \tag{1}$$

где значения x_0, x_T заданы, т.е. кривые проходят через две закрепленные граничные точки.

На множестве M задан функционал

$$I[x(t)] = \int_{t_0}^{T} F(t, x(t), x'(t)) dt, \qquad (2)$$

где подынтегральная функция F(t, x, x') имеет непрерывные частные производные до второго порядка включительно по всем переменным.

Среди допустимых кривых x(t), принадлежащих множеству \mathcal{M} , требуется найти кривую $x^*(t)$, на которой функционал (2) достигает экстремума, т.е.

$$I[x^*(t)] = \underset{x(t) \in \mathcal{M}}{\text{extr}} \int_{t_0}^{T} F(t, x(t), x'(t)) dt.$$
 (3)

Так как на кривые x(t), образующие множество \mathcal{M} , не наложено дополнительных условий, кроме граничных, задача (3) называется задачей поиска *безусловного экстремума*. Этому классу задач посвящена вторая глава. В третьей главе рассматриваются задачи поиска *условного экстремума*, когда на искомые функции кроме граничных условий накладываются дополнительные конечные, интегральные или дифференциальные условия.

СТРАТЕГИЯ ПОИСКА РЕШЕНИЯ ЗАДАЧИ

Стратегия поиска решения задачи (3) состоит в определении первой вариации δI функционала I[x(t)] и приравнивании ее к нулю согласно теореме 1 о необходимом условии экстремума функционала. В результате получаются соотношения, позволяющие найти кривые, "подозрительные" на наличие экстремума функционала.

С помощью анализа второй вариации функционала выводятся различные достаточные условия экстремума, позволяющие сделать вывод о достижении сильного или слабого минимума или максимума.

НЕОБХОДИМЫЕ УСЛОВИЯ ЭКСТРЕМУМА ФУНКЦИОНАЛА В ЗАДАЧЕ (3)

Обозначим $x^*(t)$ – кривую, на которой достигается экстремум функционала. Тогда допустимая кривая определяется по формуле: $x(t) = x^*(t) + \alpha \, \delta x(t)$, а ее производная $x'(t) = x^*'(t) + \alpha \, \delta x'(t)$, где $\delta x(t)$ – фиксированная вариация кривой, $\delta x'(t) = \left(\delta x(t)\right)'$ – производная вариации, α – числовой параметр. Заметим, что $\delta x(t) \in C^1([t_0,T])$, $\delta x(t_0) = 0$, $\delta x(T) = 0$. Тогда

$$I[x^{*}(t) + \alpha \, \delta x(t)] = \int_{t_{0}}^{T} F(t, x^{*}(t) + \alpha \, \delta x(t), x^{*}'(t) + \alpha \, \delta x'(t)) dt = \varphi(\alpha), \tag{4}$$

где $\,\phi(\alpha) - \phi$ ункция числового параметра $\,\alpha$.

Используя формулу для вычисления первой вариации функционала, имеем

$$\delta I = \frac{d \varphi(\alpha)}{d \alpha} \bigg|_{\alpha=0} = \frac{d}{d \alpha} \int_{t_0}^{T} F(t, x^*(t) + \alpha \, \delta x(t), x^{*'}(t) + \alpha \, \delta x'(t)) \bigg|_{\alpha=0} dt =$$

$$= \int_{t_0}^{T} \bigg[F_X(t, x^*(t) + \alpha \, \delta x(t), x^{*'}(t) + \alpha \, \delta x'(t)) \bigg|_{\alpha=0} \delta x(t) +$$

$$+ F_{X'}(t, x^*(t) + \alpha \, \delta x(t), x^{*'}(t) + \alpha \, \delta x'(t)) \bigg|_{\alpha=0} \delta x'(t) \bigg] dt =$$

$$= \int_{t_0}^{T} \bigg[F_X(t, x^*(t), x^{*'}(t)) \, \delta x(t) + F_{X'}(t, x^*(t), x^{*'}(t)) \, \delta x'(t) \bigg] dt, \qquad (5)$$

где $F_x = \frac{\partial F(t,x,x')}{\partial x}$, $F_{x'} = \frac{\partial F(t,x,x')}{\partial x'}$ — соответствующие производные подынтегральной функции.

В выражении (5) проинтегрируем второе слагаемое по частям, учитывая, что $\delta x'(t) = \left(\delta x(t)\right)', \quad u = F_{x'}, \quad dv = \delta x'(t)dt = \left(\delta x(t)\right)'dt \,, \quad \int\limits_{t_0}^T u \, dv = u \cdot v \,\Big|_{t_0}^T - \int\limits_{t_0}^T v \, du \,. \quad \text{Отсюда}$ $du = \frac{d}{dt} \, F_{x'} \, dt \,, \quad v = \delta x(t) \quad \text{и}$

$$\delta I = \left[F_{x'} \, \delta x(t) \right] \Big|_{t_0}^T + \int_{t_0}^T \left[F_x - \frac{d}{dt} \, F_{x'} \right] \delta x(t) \, dt \,. \tag{6}$$

Так как $\delta x(t_0) = 0$, $\delta x(T) = 0$, то

$$\delta I = \int_{t_0}^{T} \left[F_x - \frac{d}{dt} F_{x'} \right] \delta x(t) dt.$$
 (7)

Необходимое условие экстремума (8) в данном случае имеет вид

$$\delta I = \int_{t_0}^T \left[F_x - \frac{d}{dt} F_{x'} \right] \delta x(t) dt = 0.$$
 (8)

К выражению (8) применима основная лемма вариационного исчисления (теорема 2), так как в силу наложенных ограничений на кривой $x^*(t)$ функция $F_x - \frac{d}{dt} \, F_{x'}$ является непрерывной, а вариация $\delta x(t)$ – произвольной непрерывно дифференцируемой функцией, удовлетворяющей условиям $\delta x(t_0) = 0$, $\delta x(T) = 0$.

Следовательно, кривая $x^*(t)$, на которой достигается экстремум функционала, удовлетворяет уравнению

$$F_{\mathcal{X}} - \frac{d}{dt} F_{\mathcal{X}'} = 0. \tag{9}$$

Уравнение (9) называется **уравнением Эйлера**. Если функция $x^*(t)$ дважды дифференцируемая, то уравнение (9) можно записать в развернутой форме

$$F_{x} - F_{x't} - F_{x'x} \cdot x' - F_{x'x'} \cdot x'' = 0$$
 (10)

и при $F_{x'x'}\neq 0$ представляет собой обыкновенное дифференциальное уравнение второго порядка. Его общее решение $x=x(t,C_1,C_2)$ зависит от двух произвольных постоянных C_1 и C_2 и определяет двухпараметрическое *семейство экстремалей*. Два граничных условия $x(t_0)=x_0$ и $x(T)=x_T$ позволяют найти постоянные C_1 и C_2 и, как следствие, кривую $x^*(t)$, на которой может достигаться экстремум функционала. Только на удовлетворяющих граничным условиям экстремалях может реализовываться экстремум. Чтобы выяснить, достигается ли на экстремали экстремум функционала, а если да, то какой (минимум или максимум), следует использовать достаточные условия (см. стр. 37).

Теорема 2.1 (необходимые условия экстремума в задаче (3)).

Если на кривой $x^*(t) \in C^1([t_0,T])$, удовлетворяющей граничным условиям $x^*(t_0) = x_0$, $x^*(T) = x_T$, достигается слабый экстремум функционала в задаче (3), то она удовлетворяет уравнению Эйлера

$$F_{x} - \frac{d}{dt} F_{x'} = 0.$$

Уравнение Эйлера интегрируется в квадратурах лишь в исключительных случаях. Приведем некоторые простейшие *случаи интегрируемости уравнения Эйлера*.

Первый случай. Функция F(t,x,x') не зависит от x явно: F(t,x,x') = F(t,x').

Уравнение Эйлера (9) принимает вид $\frac{d}{dt}F_{x'}=0$ и, следовательно,

$$F_{x'} = C_1. (11)$$

Соотношение (11) называется первым интегралом уравнения Эйлера.

Второй случай. Функция F(t,x,x') не зависит от t и x явно: F(t,x,x')=F(x'). Уравнение Эйлера (2.10) записывается в форме $F_{x'x'}\cdot x''=0$. Его общее решение имеет вид

$$x(t) = C_1 t + C_2, (12)$$

так как x''=0, а условие $F_{x'x'}=0$ дает обыкновенное дифференциальное уравнение первого порядка. Если уравнение $F_{x'x'}(x')=0$ имеет один или несколько действительных корней вида $x'=k_i$, то получаем однопараметрические семейства прямых $x(t)=k_i$ t+C, содержащиеся в двухпараметрическом семействе (2.12).

Третий случай. Функция F(t,x,x') не зависит от t и x' явно: F(t,x,x')=F(x) или не зависит от x' явно: F(t,x,x')=F(t,x). Задача (3) в общем случае решения не имеет, так как уравнение Эйлера (9) принимает вид

$$F_{x} = 0 \tag{13}$$

и не является дифференциальным, т.е. его решение не содержит элементов произвола и поэтому не удовлетворяет граничным условиям. Однако, если решение уравнения $F_x = 0$ проходит через граничные точки (t_0, x_0) и (T, x_T) , экстремаль существует.

Yетвертый случай. Подынтегральная функция имеет вид F(t,x,x')=P(t,x)+Q(t,x)x'. Уравнение Эйлера записывается в форме $P_x+Q_x\,x'-rac{d}{dt}\,Q(t,x)=P_x+Q_x\,x'-Q_t-Q_x\,x'=0$, или

$$\frac{\partial P}{\partial x} - \frac{\partial Q}{\partial t} = 0. \tag{14}$$

Это уравнение не является дифференциальным. Если его решение удовлетворяет граничным условиям, то экстремаль существует. Если $\frac{\partial P}{\partial x} = \frac{\partial Q}{\partial t}$, то под знаком инте-

грала (2) находится полный дифференциал и, следовательно, величина интеграла не зависит от пути интегрирования, а вариационная задача теряет смысл.

Пятый случай. Функция F(t,x,x') не зависит от t явно: F(t,x,x') = F(x,x'). Уравнение Эйлера (10) имеет вид

$$F_x - F_{x'x} x' - F_{x'x'} x'' = 0$$
,

так как $F_{x't}=0$. Если умножить левую и правую части уравнения на x', то левая часть превращается в производную $\frac{d}{dt}[F-x'F_{x'}]$. Действительно,

$$\frac{d}{dt}[F - x'F_{x'}] = F_x x' + F_{x'} x'' - x'' F_{x'} - x' F_{x'x} x' - x' F_{x'x'} x'' = x' [F_x - F_{x'x} x' - F_{x'x'} x''].$$

Поэтому уравнение Эйлера может быть записано в виде $\frac{d}{dt} [F - x' F_{x'}] = 0$ и имеет первый интеграл

$$F - x' F_{x'} = C_1. (15)$$

Заметим, что часто непосредственное применение уравнения Эйлера (9) оказывается проще использования первых интегралов.

АЛГОРИТМ ПРИМЕНЕНИЯ НЕОБХОДИМЫХ УСЛОВИЙ ЭКСТРЕМУМА В ЗАДАЧЕ (3)

1. Найти F_x , $F_{x'}$, $\frac{d}{dt}F_{x'}$ и записать уравнение Эйлера

$$F_{x} - \frac{d}{dt} F_{x'} = 0.$$

Если функция F(t, x, x') соответствует какому-либо случаю интегрируемости, можно использовать соотношения (11)–(15).

- 2. Найти общее решение уравнения Эйлера $x = x(t, C_1, C_2)$, где C_1 и C_2 произвольные постоянные.
 - 3. Определить постоянные C_1 и C_2 из граничных условий, решая систему $x(t_0,C_1,C_2)=x_0$, $x(T,C_1,C_2)=x_T$.

В результате получить экстремаль $x^*(t)$, на которой может достигаться экстремум функционала.